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Linear stability of modulated circular Couette flow 
By P. J. RILEY AND R. L. LAURENCE 

Department of Chemical Engineering, University of Massachusetts, Amherst 

(Received 5 August 1974 and in revised form 17 June 1975) 

The linear stability of modulated circular Couette flow to axisymmetric distur- 
bances is examined in the narrow-gap limit. The outer cylinder is assumed 
stationary, while the inner is modulated both with and without a mean rotation. 
The equations governing the disturbance motion are solved by a Galerkin ex- 
pansion with time-dependent coefficients, and the stability of the motion deter- 
mined by Ploquet theory. Modulation is found, in general, to destabilize the 
flow due to steady rotation, although weak stabilization is found for some 
modulation amplitudes at intermediate frequencies. 

1. Introduction 
There has been a growing interest in the literature in the stability of time- 

dependent flows. The results are fairly extensive and are reviewed by Davis 
(1976) and Riley (1975). 

We are concerned with the stability of the time-periodic flow between concen- 
tric circular cylinders when the outer cylinder is at  rest and the inner has angular 
velocity 

The problem with Q, and Qp bothnon-zero has been investigated experimentally 
by Donnelly (1964). His results have provided considerable impetus to theoretical 
investigations of time-periodic motions and, indeed, have been used as a ‘stand- 
ard’ for theoretical studies of the stability of time-dependent motions and 
configurations. Donnelly found that modulation stabilizes circular Couette flow 
at low frequencies 0.3 < y < 1.0 and for small modulation amplitudes 

0 < QJQm 6 0.26 where y = ( d d 2 / 2 v ) & ,  

Y is the kinematic viscosity, W’ the angular frequency and d the gap width. Some 
evidence of destabilization was found at higher frequencies y > 1.0. He performed 
experiments at four gap widths. At one intermediate value, optimum stabiliza- 
tion occurred, for all modulation amplitudes investigated, at a frequency 
y = (2*7)-l. Stabilization was found to be enhanced by increasing modulation 
amplitude, ap/a, < 0.25. At the other gap widths stabilization increased with 
decreasing frequency. Recently Homsy (1974) has suggested that the data of 
Donnelly are a poor comparison for theory; this point will be discussed further 
inS4.1. 

Conrad & Criminale (1965) present an energy analysis of the stability of circular 
Couette flow to axisymmetric disturbances in the narrow-gap limit. They treat 

d(t) = a, + ap COSW’t’. 
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the system studied by Donnelly as one of many cases. Several aspects of their work 
are questionable. They find weak stabilization for small amplitude ratios, in 
agreement with the data of Donnelly, but the energy bound for the modulated 
problem is certainly less than that for the steady flow at low frequencies; see 
$4.1. They find for modulation of the outer cylinder with non-zero mean rotation 
(the inner cylinder stationary) that a Reynolds number, based on the maximum 
velocity of the outer cylinder, tends to zero as frequency increases. This appears 
to be a contradiction of a theorem of Serrin (1960). They present results for the 
steady problem and make a comparison with the data of Taylor (1923) and the 
energy bounds of Serrin (1959). Their calculation is based, however, on radii of 
R, = 3.8 em and R, = 4.035 em for the inner and outer cylinder respectively, 
while the results of Taylor and Serrin are for R, = 3-55 em and R, = 4.035 em. 
Re-evaluation of their criterion shows that it is particularly sensitive to gap 
width and is in agreement neither with the results of Serrin nor with the data 
of Taylor. 

Meister (1963) considers the linear stability of circular Couette flow with 
arbitrary time dependence to axisymmetric disturbances in the narrow-gap limit. 
He shows that a Galerkin expansion with time-dependent coefficients converges 
to a generalized solution of the governing equations. Meister & Munzer (1966), 
making the same assumptions as Meister (1963), study the stability of time- 
periodic circular Couette flow generated by steady rotation of both cylinders 
with a modulation superimposed on the inner one. They find that the disturbance 
kinetic energy increases less rapidly in the presence of modulation, and claim, 
therefore, that modulation is stabilizing. This may be inconclusive, however, as 
they appear to determine disturbance growth over less than one-tenth of a period 
and the maximum angular velocity of the inner cylinder is not attained. The 
long-term behaviour is thus unclear. 

Thompson (1968) reports critical data for modulation of the inner cylinder, 
with zero mean, both with and without steady rotation of the outer. Outer 
rotation is found to stabilize inner modulation. He remarks that modulation 
superimposed on steady rotation of the inner cylinder (with the outer stationary) 
is destabilizing. Qualitatively he found that at low frequencies the flow becomes 
unstable as soon as the maximum angular velocity exceeds the critical angular 
velocity Q, for the corresponding steady flow, i.e. Qm + Q p  2 Q,. At higher 
frequencies instability occurs when the mean angular velocity exceeds the 
critical value for the steady flow, i.e. !&, 2 Q,,. These findings are inconsistent 
with the instability data of Donnelly (1964), but in agreement with the existence 
of the ‘transient vortices’ which he reported. 

Thompson also performed a linear stability analysis for modulation of the inner 
cylinder with zero mean. Disturbances were assumed axisymmetric and axially 
periodic. Radial spatial dependence was removed by a finite-difference formula- 
tion followed by numerical integration in time. Neutral stability was determined 
by observing the growth of disturbance kinetic energy over several cycles. The 
theory was found to be in good agreement with his experimental data for the 
range investigated: 1-4 < y < 4.0. 

Recently Hall (1976, 1976) treated this problem using asymptotic methods. 
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The results are largely complementary to those presented in this work and will be 
discussed in detail in $ 4. 

I n  the following we examine theoretically the experimental configurations of 
Donnelly (1 964) and Thompson (1968) ; via. the outer cylinder of a circular Couette 
apparatus is stationary and the inner modulated both with and without a mean 
rotation. In  $2 we formulate the linearized stability problem in the narrow-gap 
limit and describe the solution method. In  $3  we present the theoretical results 
for the particular cases considered, and in 3 4 make a comparison with the experi- 
mental data available and earlier theoretical work. In  95 we briefly survey the 
results and make some concluding remarks. 

2. Mathematical formulation 
2.1. Pr imary  Jlow 

We consider the flow of a Newtonian incompressible fluid of density p and vis- 
cosity ,!.L between infinitely long concentric cylinders having radii R, and R,. As 
in the work of Hall (1975,1976), it is assumed that the separation d between cylin- 
ders is small compared with the radius R, of the inner cylinder. We make the usual 
small-gap approximation, so convenient length, time and velocity scales are 

d ,  pd2/,!.L, RlQ (1) 

and the primary flow U'(r, t )  = (0, V'(r, t ) ,  0) is adequately represented by 
U(x, r )  = (0, V ( z ,  r ) ,  O),  the solution of 

a V p  = a2V/ax2, P a )  

( 2 b )  V ( 0 ,  r )  = s + E. coe wr, 
where 

x = ( r  - R,)/d,  w = pw'd2/,u, V(x ,  r )  = V'(r, t ) / R ,  a, 
s = Q,/Q, E = Qp/Q,,  r = ,ut/pd2. 

The solution may be written as 

X ( 4  = 741 -4, W y )  = S"l0) + g t ( O ) .  

y = (&J)+ is the reciprocal of the dimensionless Stokes-layer thickness, and will 
be refetred to as 'frequency'. 

At low frequencies, 
V(x ,r )  ( i -x)(s+ecosw~),  (4) 

while a t  high frequencies, 

( 5 )  
40-2 
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Hence at high frequencies the Stokes layer is confined to a region adjacent to the 
inner cylinder, which becomes increasingly narrow as the frequency increases. 
The complete profile (3) was used for all calculations. 

2.2. Stability equations 

We suppose that the primary velocity and pressure fields U = (0, V(r,  T ) ,  0) and 
II (r, 7) are disturbed : 

(6) I uyr, e, z ;  7) = u(r, 7) +ap, e, 2; T), 
n*(r, e, 2; 7) = w, 7) +w, o , z ,  T), 

where U is (2n/w)-periodic in time and ( r ,  8, z )  are cylindrical co-ordinates. 
The difference variables ii and j3 satisfy 

9 - 1  au/& + 5 .  V 6  + U. Vii +ti. VU = - Vp +W-'Aii, ( 7 4  

V . 6  = 0,  (7b)  

6 = 0 on solid boundaries, (7 c )  

( 7 4  a(x, e, z ;  0) = Q,, 

wherethe reference scales are given by (l), with z = z'/d and the Reynolds number 

2 = RISid/v. 

In  the present study we linearize ( 7 )  and solve 

W-18ii/& + U. Vii + ii . VU = - V$ +W-lAii, ( 8 4  

V . 6  = 0, (8 b )  

5 = 0 on solid boundaries, ( 8 c )  

( 8 4  tip, e, z ;  0) = a,. 
Linearization for periodic motions is justified by the work of Yudovitch (1970). 
The critical Reynolds number determined, is a sufficient condition for in- 
stability, i.e. if the motion satisfies W < W,, then there is at least one disturbance 
which will grow and lead to a different asymptotic motion. Yudovitch shows that 
it is not necessary to solve (8) as an initial-value problem. We may instead look 
for solutions of the form 

where u* is (2n/w)-periodic in 7, and solve the following eigenvalue problem: 

6(r, T) = euTu*(r, T), (9) 

( 1 0 4  

v.u* = 0, ( l o b )  

u,(r,7+2n/w) = u*(r,T), (10c) 

u* = 0 on solid boundaries. (104 

A h  

A?-'(cu* +au*/c%)+u*.VU+U.Vu* = -Vp* +W-lAu,, 

The stability of the motion is determined by the eigenvalues (ri) of (10). If the 
corresponding eigenfmctions {u*, i(r, 7)) are complete in an appropriate sense, 
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the solution of problem (8), corresponding to an arbitrary infinitesimal initial 
disturbance ti,, may be constructed using an eigenfunction expansion. It follows 
that the stability criterion is independent of the exact form of the initial distur- 
bance in the same sense as €or a linear stability analysis of a steady flow. 

In  the following we do not solve (10) directly, but treat (8) by Galerkin’s 
method and determine the {ri} by the application of Floquet theory. 

For modulated circular Couette flow in the narrow-gap limit, Galerkin’s method 
is known to converge if the initial data Go are sufficiently smooth (Meister 1963). 
The solution is then of necessity a linear combination of terms of the form (9). 
It follows that the stability criterion determined by this method is the one required 
by the Lyapounov theorem of Yudovitch (1970). Furthermore, we may assume 
that the set {u*,Jr, 5-11 is complete. 

We suppose the disturbances ti and 9 to be axially periodic and axisymmetric: 

I C,. = u(r, 7 )  cos az,  
6, = w(r, 7 )  cosaz, 

iis = w(r, 7) sin az, 
9 = p(r, 7) cosaz, 

where a is the dimensionless axial wavenumber. The formulation used is the usual 
procedure outlined in Chandrasekhar (1961, p. 394). 

The most dangerous disturbance and the corresponding asymptotic secondary 
flow are axisymmetric for steady flow, i.e. e = 0 (see Kruger, Gross & DiPrima 
1966). It is not clear that disturbances with non-zero azimuthal wavenumber 
will not be important for the modulated problem. It was decided, however, to 
restrict attention to axisymmetric disturbances, not only to avoid the ‘curse of 
dimensionality’, but also because Thompson (1968) does not report having ob- 
served any non-axisymmetric disturbances. 

The eventual form of the disturbance equations, using the small-gap approxi- 
mation, and appropriate scaling? of the velocity components, yields the equations 

(12a) 

(12b) 

Paula7 = 2% - ~t9(26)* VV, 

a~1a.r = LV - &(2s)* ( D V )  U ,  

I u = D u = v = O  a t  x = 0 , 1 ,  

U ( X , O )  = uo, v(z,O) = wo, 

where 9= D2 - a2, and 6 = d/R,. 
= LRp; then s = 0 and e = 1 

in (3), and we define 9 = Qp d/u = gp. For modulation with non-zero mean 
we set fi = Qm, hence9 = R, Qmd/u = grn and, in (3), E = Qp/LR,is the dimension- 
less modulation amplitude. 

For modulation with zero mean (R, = 0) ,  let 

2.3. Solution method 

We expand the solution in a complete set of functions which mtisfy the boundary 
conditions (12 c) : 

N % 
= z 9(7; N )  r$j(X), = 2 q 7 ;  8, $ j W ,  (13a,b) 

j=l j= 1 

t The scaling used here results in the characteristic number W(28)t. This is related to 
the usual Taylor number by T = 29W. 
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where 

8 and A. are Jacobi polynomials of order j - 1 and are defined in the appendix. 
N and 8 are integers to be determined by requirements of accuracy; we take 
N = 8. In what follows, we shall suppress the explicit dependence of the co- 
efficients uj(7; N )  and bj(7; N )  and the resulting eigenvalues upon N .  

The errors eN and EN resulting in (12) from truncation of the infinite expansions 
to N terms are forced to be orthogonal to each element of the respective set of 
approximating functions (rji}gl and {fii}g1, giving rise to a system of 2N 
ordinary differential equations for the coefficients {aj(T)},”=l and (b , (~ ) } j” , , .  This 

r j j ( X )  = x2( 1 - x)2A.-l (x), &x) = x( 1 - x) AL1 (2). (14) 

may be written as [;I = G(7;,,e,,,,I,,c],\ 

a(0) = a,, b(0) = b,, I 
where a dot denotes differentiation with respect to 7, and G(7) is a (2n/w)-  
periodic, 2N x 2N square matrix defined in the appendix. 

We construct a fundamental matrix X(7) of the system (15): 

X = G X ,  X(O)= I (16) 

(where I is the 2 N x 2 N  identity matrix). Floquet theory (Coddington & 
Levinson 1955, p. 78) states thatX(7) may be represented as 

X(T) = P(T) exp (TC), 

where P(7) is (%r/w)-periodic matrix, C is a constant matrix and both may be 
complex. 

The stability of the motion is determined by the eigenvalues (.;.}El of the 
matrix C, which are easily determined from the eigenvalues {hj}El of x(2n-I~): 

If C is transformed to Jordan canonical form by a matrix Q, then X(Zn/w) is 
transformed to upper triangular form by Q. Hence 

, k =  0 , 1 , 2  ,..., 

and crj = w{ln hi 2nki)/Zn. 

To calculate the eigenfunctions u + , ~  and v*, associated with the eigenvalue 
gj we have only to determine the corresponding initial conditions a$, b$ for 
system (15), which satisfy 

X(Zn/w) [ = hj 63. 
The coefficients for the Galerkin expansion are 

and 

where u(x,  7) and v(x, 7) are given by (13) with the coefficients determined by (17). 

u * , ~  = exp ( - 7aj) u(x,  T ) ,  v*, = exp ( - 7vj) v(x, T ) ,  
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Let crl be the eigenvalue with greatest real part. The primary motion is stable 
or unstable to infinitesimal disturbances according as Re (a;) 2 0. The boundary 
between conditional stability and certain instability is given by Re (crJ = 0. 

The finite amplitude motion which develops in the neighbourhood of bifurca- 
tion has been considered by Joseph (1972) and Iooss (1972). At neutral stability, 
Re  (gl) = 0, let o1 = Im (crl). If o1 = 0, a finite amplitude motion with period 
27r/w will arise (Joseph 1972); furthermore, supercritical branches are stable and 
subcritical unstable. I f  ol/o = m/n is rationally dependent and m/n is irreducible, 
motion of period 277/0 will develop (Iooss 1972). It is to be expected that super- 
critical branches will be stable and subcritical unstable (cf. Ruelle & Takens 
1971). I f  wl /o  is rationally independent the quasi-periodic motion may not 
survive nonlinear interactions, which might lead to motion of quite different 
character (Joseph 1972). 

2.4. Numerical technique 

The matrix inversions required to derive system (15) and the calculation of the 
eigenvalues of X( 2 n - l ~ )  were performed using programs provided by the Univer- 
sity of Massachusetts Computing Center. The inversion routine uses Gauss- 
Jordan elimination with complete pivoting. The eigenvalue routine uses the QR 
algorithm (Francis 1961; Wilkinson 1965). It was found in all cases that 

2 N  

j=1 
tr X (%/w) = C. hi to at least 9 decimal places. 

The fundamental matrixX(.r) of system (16) was constructed with a fifth-order 
Runge-Kntta-Butcher formula (Lapidus & Seinfeld, 197 1,  p. 61), using double 
precision. A check on the numerical integration is provided by 

where det and tr denote determinant and trace respectively (see Coddington & 
Levinson 1955, p. 82). Alternatively 

tr  G(s) ds = tr G,  
2 N  

j=1 

2 N  

= I  
Im(gj) = *277ki, k = O , l ,  2, ... . 

System (15) is reasonably stiff. It is difficult to calculate accurately the values 
of those eigenvalues having large negative real parts if w = 3y2 is small or N large. 
For example, let 

At y = 3.0, it  was found that 6 = 1.5 for N = 3 and = 2.7 for N = 5 .  At higher 
frequencies, y 2 5-0 for N = 3 and y 2 8.0 for N = 5, 6 = 1.0 with an accuracy 
of better than 0.5 %. 
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The steady problem was solved using Floquet theory by forming a fundamen- 
tal matrixX(7) a t  different instants of time T*. It was found that = E(y,N), 
when T* = 2n/w = n/y2. However, the critical parameters were independent of T* 

its required. Thus the largest eigenvalue found is accurate, but the values of 
higher eigenvalues are not reliable if the period of oscillation is large. For fixed 
N ,  [ ( y , N )  is a monotonically decreasing smooth function of y asymptotic to 
unity, and any departure from this behaviour proves to be a very sensitive check 
on the stability of the integration. 

Critical parameters are determined by finding for fixed E ,  y and N values 
a, and 9 , J d  such that 

(Re {g1(€, y ;  a,, R,J6)}1 < 

g C J S  = g(a,) JS = min9(a) JS. 

(1W 

( 1 8 b )  

The two-dimensional search in the a, 9 J 6 plane was carried out using two one- 
dimensional searches. For fixed a, a value 9 J S  such that (I8 a)  was satisfied was 
found using the secant method (Ralston 1965, chap. 2). For fixed9J8, Re (al) 
was maximized as afunction of ausing an acceleratedsearchwith quadratic fitting 
a8 a predictor (Jacoby, Kowalik & Pizzo 1972, p. 69). The search was terminated 
when the increment size A a  before the next prediction satisfied 1 Aal < 3.0 x 
The procedure was then repeated until (18) were satisfied with the accuracy 
required. In particular, condition (184 is sufficiently stringent that values of 
9 , J S  are found accurately to three decimal places for the values of N chosen. 

At low frequencies, y 6 2.0, an excessive amount of computer time is required 
to undertake an extensive search using the fundamental-matrix approach. 
However, since the magnitudes of the real part of the eigenvalues vary consider- 
ably, the projection corresponding to the eigenvalue al is quickly dominant. 

Initial values for a, and b, were produced by a random-number generator 
(RANI?, RANFSET from the CDC 3600 Fortran Library Programs), and the dis- 
turbance kinetic energy 

K(T)  = jol &(u2 + v2 + w2) dx 

calculated. The calculations above were performed using the condition 

rather than (18a).  This technique provided very accurate initial estimates for 
the application of the fundamental-matrix algorithm; indeed, the results were 
identical. At higher frequencies the fundamental-matrix method was used 
directly. 

3. Results and discussion 
3.1. Precision of the numerical procedure 

An analysis of the steady problem with the outer cylinder stationary and the 
inner one rotating was used as an initial test of the calculation procedure. The 
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N 

3 
4 
5 
6 

N 

7 
8 
9 

= 1.0, E = 0.25 

a %n 4s [ A a l  [A(9%7lJs)l 

3.119 41.100 - 3.2 x lo4 4.9 x 10-4 
3.119 41.091 0 2.2 x 10-4 

- 3.118 41.120 - 

3.119 41.091 0 0 

y = 3.75, 6 = 2.0 
3.053 43.173 - - 
3.077 42.922 - 7.8 x 10-3 5.8 x 10-3 
3.083 42.849 - 1.9 x 10-3 1.7 x 10-3 
3.086 42.827 - 9.7 x 10-4 5.1 x 10-4 

CL 9 9  4s [ A a l  [A(@,J8)1 
7 = 13.0, E = 03 

11.157 740.835 - - 

11.072 730.7 7.7 x 10-3 1.39 x lo-' 
11.063 721.499 8.1 x 10-4 1.28 x 

TABLE 1. Variation of accuracy of representation as a function of 
E and y .  [AZ,] = (Zj- l - .Zi) /Zd.  

results may be compared with those reported by Chandrasekhar (1961, p. 304) 
and Hall (1975). Chandrasekhar gives%, ,/I3 = 41.172 and a, = 3.12 for the order 
of approximation N = 3. We found = 41-198 and a. = 3.1265 for N = 3 
and %,AS = 41.170 and a, = 3.1265 for N = 5. Hall gives %,J6 = 41.170 and 

A more detailed analysis of the convergence of the numerical procedure was 
then performed for the time-dependent flow problem. The calculations clearly 
indicated that the degree of the approximation N required to maintain precision 
varied strongly with the parameters e and y. Computation time increased signifi- 
cantly with increasing N .  The reported results are therefore not uniformly precise. 
Table 1 shows how the critical values of go 2/13 and a! change with N ,  E and y. 
The estimated maximum error in both the critical Taylor number and the critical 
wavenumber is less than 0.6 %, except for E = 10.0 and y > 6 and for modulation 
with zero mean with y > 8, where the estimated maximum error is less than 1.5%. 

In  the course of the calculations, the order of the approximation w&s changed 
to minimize computational time while maintaining adequate precision. For low 
frequencies, y < 2.0, the velocity profile is relatively simple and N = 3 was found 
sufficient. For modulation with non-zero mean the oscillatory shear flow has a 
boundary-layer character at high frequencies and does not substantially affect 
stability, and N = 3 was again adequate. For intermediate frequencies, N = 5 
or 6 was required. For modulation with zero mean the value of N required for a 
good approximation increases with frequency; for example, at y = 11.0, N = 9 
gives results estimated to be precise to within 1 %. The convergence of the wave- 
number with increasing N was sometimes oscillatory. I f  the response was syn- 
chronous (q = 0 )  %,J6 was a monotonically decreasing function of N ,  but if the 
response was half-frequency (wl = +w) convergence was sometimes oscillatory. 

a, = 3.1266. 
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The results of the calculations are presented graphically, thus the variation of 
accuracy is not apparent. Tabulated values are available from the authors 
upon request. 

For the modulated flow the computing time, at fixed N ,  is proportional to y2. 
For y = 3.0 and N = 3.0, approximately 30 min of CDC 3600 computer time are 
required toevaluate the critical parametersfor E = 0.1, 0.5, 1.0, 2.0, 5.0 and 10.0. 
As y becomes small the computing time increases; indeed, as stated above, it 
becomes impracticable to perform a complete search using the fundamental- 
matrix technique. However, calculations using condition (19) are relatively fast, 
and for y < 1.0 the critical parameters are only weak functions of frequency. For 
flows with non-zero mean the fundamental-matrix technique is fast for y > 3.0 
(i.e. 10-20 min to evaluate the critical parameters for E = 1-0-5.0 at a single 
frequency) even though N = 5 or 6 may be required. For the modulated flows 
with zero mean the value of N required for accurate simulation increases mono- 
tonically with y, and computing time becomes excessive. However, as will be 
discussed in $ 3.2 an asymptotic region is reached and calculations are not required 
at higher frequencies unless the eigenfunctions need be constructed. The major 
time-consuming step is the numerical integration of system (16). The Runge- 
Kutta scheme used here does not have a large stability region but i t  is accurate 
(Lapidus & Seinfeld 1971). A saving in computer tim.e may be possible using 
schemes specifically developed for the integration of stiff systems. 

3.3. Modulation of CouetteJlow with zero mean  
The first case studied was modulated Couette flow with zero mean. The critical 
Taylor number gP J 6 and wavenumber cc are shown in figures 1 and 2 respectively 
for 1-0 6 y 6 13.0, and for y 6 1.0 in figures 4 and 6 (figure 4 gives %J6 vs. y ,  
where % = Rl(Q& + Q;)* dlv; the curve for E = co corresponds to modulation with 
zero mean, %-Js = gpJ&). 

From figures 4 and 6, the results for low frequency, y < 1.0, are most indepen- 
dent of frequency. The shape of the primary velocity profile is only a weak 
function of frequency in this region [equation (4)]. I n  the neighbourhood of 
y = 1.5, the growth-rate surface Re (rl} = Re(al(a,9, JS)]  is not unimodal. The 
critical curves are not smooth (figures 1 and 2), since the most dangerous mode of 
response changes at a frequency just exceeding y = 1-5. Both responses are, 
however, synchronous (wl = 0). This phenomenon will be discussed later, in 
$4.2.  As the frequency increases further, the Stokes layer becomes confined to a 
region close to the inner cylinder, and the critical parameters are expected to 
become independent of gap width. It follows that 

9, J6 N yQ, CL - 7. 

It was found numerically that for y 2 8-0 

9p JS = (15.3 ~f: 0.05) 78, CL = (0.85 0.01) 7. 

The error reflects the uncertainty in determining that the asymptotic region has 
been reached and that the critical values have converged at the large values of 
N required. 
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FIGURE 1. Modulation with zero mean. Critical Taylor number W,Jy  as a function of 
frequency. Data are from Thompson (1968) for 8 = 0.444, R, = 6.0275 em. 

20 

10 

1 .O 10.0 20.0 

Y 
FIGURE 2. Modulation with zero mean. Critical wavenumber u 

as a function of frequency. 

Figure 1 shows a comparison of the theoretical predictions with the data of 
Thompson (1968), obtained by flow visualization. For y 2 2.0 the discrepancy 
between theory and observation is of the order of 10-15 yo. The overall trend 
seems satisfactory. There appears to be some evidence for a change in response, 
but this is hardly conclusive. 
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50 -I 

I I I I I 1  I l l  

0 5.0 10.0 

Y 

I 1  

FIGURE 3. Modulation with non-zero mean. Critical Taylor number BmJ6 as a function 
of frequency with the amplitude ratio E as a parameter. h denotes half-frequency response. 

For y < 2.0 the agreement is poor. The experimental values appear to be 
asymptotic to the critical valueW,2/6 for steady flow as y -+ 0. This is, in fact, the 
strong energy bound in the low frequency limit. It is expected that the linear 
analysis will be a poor predictive technique (at low frequencies); see Rosenblat & 
Herbert (1970). The analysis defines a flow to be linearly stable (unstable) if 
decay (growth) occurs from cycle to cycle. At low frequencies excessive growth 
may occur during part of a cycle and the class of disturbances for which linear 
theory is expected to remain valid becomes vanishingly small. Thus even if dis- 
turbances decay from cycle to cycle, or if growth observed during one cycle is 
independent of that observed in adjacent cycles, growth during part of a cycle is 
likely to be so large that secondary motion will be observed experimentally. 
Hence instability theory based on a periodicity criterion is likely to be inappro- 
priate at  low frequencies (Homsy 1974). If more reliable estimates are needed it 
is necessary to apply strong energy methods or to solve the complete nonlinear 
problem. 

3.3. Flows with non-zero mean 

The results as a function of frequency with amplitude ratio as a parameter are 
presented in figures 3-6. Figure 3 is a plot of the Taylor number 9tmJ8 based on the 
mean angular velocity of the inner cylinder. Figure 4 presents the predictions 
in terms of the Taylor number 9 4 6  based on the average angular velocity of the 
inner cylinder, (Q& + Qi)*; this allows comparison with the behaviour for modula- 
tion with zero mean and in addition separates the results for small amplitude 
ratios. 

For small amplitude ratios, E < 1.0, the stability characteristics are dominated 
by the mean rotation. The critical Taylor number increases monotonically with 
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FIGIJF~E 4. Modulated circular Couette flow. Critical Taylor number 248 as a function 
of frequency with the amplitude ratio E as a parameter. h denotes half-frequency response. 
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Y 
FIGURE 5. Modulated circular Couette flow. Critical wavenumber a as a function of 

frequency for E d 2.0. h denotes half-frequency response. 

frequency, approaching the steady value asymptotically (see figures 3 and 4). The 
response is synchronous and modulation destabilizing, the degree of destabiliza- 
tion increasing with modulation amplitude. The reduction of the critical Taylor 
number 9,,, JS below the steady value 9, JS is most pronounced in the low 
frequency limit (see table 2). For E < 0.5 the effect is negligible from an experi- 
mentaI viewpoint. 
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0 5.0 10.0 

Y 
FIGURE 6. Modulated circular Couette flow. Critical wavenumber a as a function of 

frequency for E 2 2.0. h denotes half-frequency response. 

E 

0.1 
0.19 
0.25 
0.5 
1.0 
2-0 
5.0 

10.0 

a 

3.124 
3-121 
3.117 
3.088 
2.962 
2.987 
3.030 
3.037 
3.039 

t a,Js* 

g?n 4s  ( g o J ~ ) l ( % h m  
41.186 1.0003 
41.152 1.001 
41.116 1.002 
40.834 1.009 
38.743 1.06 
27.493 1.50 
12.315 3.35 

6.261 6.58 
62.963t 0,65$ 

$. (wOm/(w,Js). § WO& 

(woJs)/(l+ €1 
37.45 
34.62 
32.96 
27.47 
20.60 
13.73 
6.87 
3.75 

41.198s 

TABLE 2. Critical parameters in the low frequency limit y = 0.3125, N = 3. The values 
for the steady problem have been taken to be woJs = 41.198, a0 = 3.126. 

The critical wavenumber is less than the steady value a t  low frequencies. For 
8 < 1-0 the wavenumber then increases slowly with frequency, passes through a 
maximum at a frequency ya and then decreases to the steady value as frequency 
increases. For larger amplitude ratios, similar behaviour is observed when the 
frequency is sufficiently high that instability is primarily associated with the 
mean rotation. Table 3 gives approximate values of ya. 

For large modulation amplitudes, E 2 5.0, it  is apparent from figures 4 and 6 
that at low and intermediate frequencies the stability behaviour is dominated by 
the oscillatory component, and the system behaves effectively as a modulated 
flow with zero mean. 

The critical curves for E = 5.0 and 10.0, like that for modulation with zero 
mean, show a change from one synchronous response to another a t  y M 1.5. 



Linear stability of modulated circular Couette $ow 63 9 

& YQ 
0.1 3.75-4.0 
0.5 3.75-4.0 
1.0 3.75 
1.5 4.0 
2.0 4.5 
5.0 8.0 

TABLE 3. Approximate values of frequency ya 

For y < 1.5, the critical wavenumber 01 and Taylor number vary only slightly 
with amplitude ratio (figures 4 and 6). 

Figure 3 shows that, for IZ = 5-0, as the frequency is increased the Taylor 
number g m J S  increases also; eventually the mean rotation alone would be un- 
stable for 4.75 < y < 5.0. At y = 5.0 the response becomes half-frequency 
(a1 = +a)) corresponding to a parametric stabilization of the mean rotation, and 
the rate of increase of stabilization with frequency is slowed. The critical Taylor 
number and wavenumber now have values intermediate between that cor- 
responding to instability arising in the Stokes layer and that due to an unstable 
mean rotation. Between y = 5.5 and y = 5.75, the response reverts to synchron- 
ous. The wavenumber is now characteristic of an unstable mean rotation, the 
Stokes layer having too much of a boundary-layer character to affect stability 
substantially. The critical Taylor number g m J S  then decreases to a value less 
than the steady value 9?o,,/S, subsequently approaching9',JS asymptotically. The 
frequencies a t  which the response changes from synchronous to half-frequency 
(and back) have not been determined with great accuracy since calculations were 
generally performed a t  intervals of frequency of Ay = 0.25. More extensive calcu- 
lations require extensive computer time since the growth-rate surface 

has three local maxima, one corresponding to a half-frequency response and two 
to synchronous responses (one associated with instability arising in the Stokes 
layer and the other with an unstable mean rotation). Thus, in this region it is 
necessary, in general, to investigate fully at  least two maxima. 

Similar behaviour is expected for y = 10.0) though a t  higher frequencies. The 
calculations, however, have not been pursued further. 

Amplitude ratios of E = 1-5 and 2.0 show a steady transition from behaviour 
dominated by the mean rotation ( E  < 1.0) to behaviour dominated by the oscil- 
latory shear flow (e 3 5-0). 

For e = 2.0 the response is synchronous until y = 1.85, when a subharmonic 
resonance is possible, which slows the rate of increase of Taylor number with 
frequency (figure 3). The mean rotation alone would become unstable for 
2.75 < y < 3.0. At y = 3.25 the response becomes synchronous, and associated 
with instability of the mean rotation. The wavenumber is plotted in both figure 
5 and figure 6 to allow comparison with the values for both smaller and larger 
amplitude ratios. 
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E Y1 C%nJSIyl [ g m  JKIy , lgoJS Ya 
1.5 3.0 41.554 1.01 5.0 
2.0 3.25 46.515 1.13 7.0 
5.0 5.5-5.75 46.971 1.14 9.0 

TABLE 4. Approximate frequency y1 at  maximum stabilization, corresponding enhance- 
ment relative to the steady problem, and approximate values of frequency yz 

For E = 1.5 the wavenumber initially decreases with increasing frequency, 
which is similar to the behaviour observed for E = 2.0. The oscillatory component 
of flow is not, however, strong enough to drive a parametric resonance and the 
response remains synchronous. The wavenumber then increases to a value 
characteristic of instability of the mean rotation. Weak stabilization is observed 
for2.25 < y < 4.0. 

For E 2 1-5 some degree of stabilization is predicted (figure 3). The approxi- 
mate frequency y1 at which maximum stabilization occurs and the corresponding 
fractional enhancement of stability are given in table 4. The effect may be seen 
to be fairly small ( < 15 %). As the frequency increases from yl, Bm J8 decreases 
to a minimum which is less than the steady value BoJ8, a t  a frequency yz, 
and then increases monotonically to 9 o J 8  as the frequency is increased further. 
This behaviour is not particularly apparent from figure 3, so the approximate 
values of yz are given in table 4. 

We observed from tables 3 and 4 that behaviour manifest at a particular 
amplitude ratio is usually apparent at higher values of the frequency as the 
amplitude ratio increases. 

No stabilization is observed for E < 1.0. Thus it appears that, for modulation 
to stabilize the mean rotation, the angular velocity of the inner cylinder must be 
negative during part of the cycle. 

Subharmonic responses are found only for E 2 2.0 (no calculations were per- 
formed for 1.5 < E < 2-0). The oscillation must be significant for resonance 
phenomena to become apparent. 

4. Comparison with earlier work 
4.1. Comparison with experiment 

Thompson (1968) remarks that a t  low frequencies modulated flows with non- 
zero mean become unstable ‘about as soon as’ 

Bm = B o / (  1 + 8 ) .  (20) 

As remarked earlier, the corresponding result for flows with zero mean is 

gp = Bo. (21) 

At low frequencies the velocity profile is given approximately by (4). Ifgf  
is the critical energy bound for the stability of the steady flow to axisymmetric 
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disturbances in the narrow-gap limit, it follows that the modulated flow will be 
strongly stable (to axisymmetric disturbances) if 

i.e. 

for flows with non-zero mean or if 

i.e. 

for flows with zero mean. These predictions have been confirmed by calculations 
using the complete profile (Riley & Laurence 1976)) and are found to be accurate 
for y < 2.0. Thus criteria (20) and (21) are the strong energy bounds if we equate 

The linear and energy bounds for the steady problem may be shown to be 
very nearly equal when disturbances are assumed to be axisymmetric and of 
h i t e  though limited size if use is made of an ‘optimal coupling constant’ in 
deriving the energy equalities (Joseph & Hung 1971). Thus we may consider (20) 
and (21) as being consistent with strong energy theory, since the arguments 
made above are still valid for the modified energy method. 

A comparison of (20) and (21) with the low frequency linear predictions is 
made in table 2. It can be seen that 

9f to go. 

gm JS > 9oJS/(1+€), g P J S  2 9 0 ,  
asrequired. 

unstable when 
At higher frequencies Thompson states that flow with non-zero mean becomes 

a?’,@ M 90.JS.  

Hence these results of Thompson are consistent with the present linear theory 
for small amplitude ratios. He does not, however, state the values of the amplitude 
ratio used in his experiments. 

The most extensive experimental investigation of the stability of modulated 
Couette flow is due to Donnelly (1964). It is of interest to discuss the instability 
criterion he used if we are to make a meaningful comparison of his results and the 
theory (cf. Homsy 1974). 

Donnelly used an apparatus which produced an electrical signal proportional 
to the redial perturbation of the flow. The signal was integrated over one cycle; 
we shall refer to this quantity as the amplitude. In  the absence of instability, the 
amplitude should be approximately constant. 

Donnelly states that 

The criterion for instability with modulation was taken to be the presence of 
regular cells revealed by slowly moving the outer cylinder in the axial direction. 
The cells are always recognised by their periodicity in the axial direction. Under 
certain circumstances one can find a trace of cell motion as soon as the criterion 
. . . [equation (20)]. . .is exceeded. However, if s1, is increased slightly, the 
signal does not amplify according to the law discussed by Donnelly (1963). 

41 F L M  75 
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The law mentioned is that of Landau, i.e. that the amplitude of disturbance 
secondary motion increases as 

amplitude N (92 -9$?J*. (22) 

This relation will hold for a time-periodic primary flow only if bifurcation is 
one-sided. Joseph (1973) shows that if the response is synchronous (as would be 
expected for the parameter ranges investigated by Donnelly, c < 0.25, y < 1.0) 
this need not be true. I f  we note that Donnelly measured amplitude as a function 
of Reynolds number on a branch which was apparently initially subcritical 
by linear theory. If  bifurcation is indeed one-sided he was presumably measuring 
disturbance growth on a quasi-steady profile, in which case growth during one 
cycle might be entirely independent of that in successive cycles. Such a motion 
would not be truly periodic. If bifurcation is two-sided (22) is not applicable and 
Donnelly may well have been performing experiments on a branch that was not 
tangential to the linear solution, or the motion may have been quasi-static as 
discussed above. For either two-sided or one-sided bifurcation (the latter is ex- 
pected here, Hall 1975) analysing data in terms of (22) need not determine the 
correct critical parameters if, as in Donnelly’s data, finite amplitude radial motion 
was observed in situations he considered stable. 

There seems, therefore, to be evidence of instability, i.e. ‘transient vortices ’, 
at Reynolds numbers less than those taken to be the critical values by Donnelly. 
The vortices f i s t  occur a t  Reynolds numbers given by (20), and this interpreta- 
tion of his data is consistent with Thompson’s remarks and strong energy theory. 

4.2. Comparison with recent theoretical work 
Hall (1975, 1976) analysed the stability of modulated Couette flow with non-zero 
mean. The results of his analysis reinforce the conclusions of this research, sug- 
gesting that modulation has a destabilizing effect. 

In  the first paper (Hall 1975), two asymptotic cases are reported: the limit as 
y -+ 0 with y2/c  fixed, and the limit as y -+ 00 with E arbitrary. The low frequency 
results can be written in the notation of this paper as 

93’;s = 9 $ 8 -  1 0 4 * 3 ~ ~ +  3 . 4 ~ ~ y 4 + 0 ( ~ ~ ,  e2y8). 

This is wholly consistent with the results given in figure 4. Hall’s high frequency 
results (for large y with E arbitrary) can be written as 

In  the second paper (1976) Hall recovers these results in the limit B -+ 0 and 
sharpens the high frequency result, resolving some difference with our calcula- 
tions. Modulation clearly destabilizes the flow, the destabilization decreasing 
with an increase in frequency in accord with the low amplitude results given in 
figure 3. 
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4.3. On the mechanism of instability 

There seems little doubt that a centrifugal driving force is the primary cause of 
instability. Thompson (1968) found experimentally that steady rotation of the 
outer cylinder stabilizes modulation of the inner with zero mean, as one would 
suspect if this were the case. 

Rosenblat (1968), on the basis of an inviscid analysis of modulated Couette 
flow, suggests that a radial phase differential may cause instability, a mechanism 
independent of factors such as centrifugal instability. Von Kerczek & Davis 
(1974) note that the inviscid limit is not well defined for flows whose velocity 
profiles depend explicitly on the kinematic viscosity, in particular for modulated 
flows. They show, in addition, that a plane Stokes layer is linearly stable at  least 
for gP Q 800y. Hence a phase differential alone is probably insufficient to cause 
instability. 

The increasing radial phase differential may possibly influence the change in 
the most dangerous response as frequency is increased from low values (y  < 1.0), 
the change from one synchronous response to another at y = 1.5 for modulation 
with zero mean being a possible example. This appears, however, to be a difficult 
notion to formulate quantitatively. 

The disturbance kinetic energy was examined in this frequency range to 
investigate the response. For modulation with zero mean, pulses occur on both 
forward and backward swings. Similar behaviour was observed for frequencies 
both less than and greater than y = 1.5. For larger amplitude ratios E 2 5.0, 
pulses occur both on backward and forward swings, though the mean rotation 
reduces the pulse intensity on the backward swing. Thus the kinetic energy shows 
no marked variation as the response changes at y = 1-5. 

The details of the velocity field do change, however. For flow with zero mean 
and for y < 1.5, the radial and axial components of the disturbance pulse in 
different directions on successive swings and appear to have zero mean. The 
azimuthal component, while pulsing twice during a cycle, does so in the same 
direction. For y > 1-5, the radial and axial components now have the same 
direction on successive pulses, while the azimuthal component reverses direction 
on successive swings and appears to have zero mean. This high frequency 
behaviour has already been noted by Thompson (1968). For large modulation 
amplitudes e 2 5.0 the velocity components pulse in the same sense as for modula- 
tion with zero mean a t  the same frequency. No component now has zero mean, 
however, as the mean rotation opposes growth on the backward swing. For lower 
modulation amplitudes e < 2.0 the disturbance kinetic energy pulses only on the 
forward swing. 

5. Conclusions 
If we present results in terms of a Taylor number 9?,J8 based on the mean 

rotation we may conclude that, in general, modulation is destabilizing. At low 
modulation amplitudes, e < 1.0, the behaviour is dominated by instability 
of the mean rotation. For large modulation amplitudes, e 2 5.0, instability 

41-2 
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associated with the oscillatory shear is dominant until the frequency is sufhiently 
high that the Stokes layer is too thin substantially to affect disturbance growth. 
If the velocity of the inner cylinder is negative during part of the cycle, weak 
stabilization is possible. If, however, t 2.0, a degree of stabilization is possible, 
and is associated with a parametric resonance of the oscillatory shear and the 
mean rotation. 

Results in terms of the Taylor number 548 or ( 1  + 6 )  gm48 show that, for a 
modulated system, larger angular accelerations may be attained than in the 
corresponding steady problem before instability is manifest. Thus, in this sense, 
modulation may be considered stabilizing. 

Both linear and energy theories of the stability of time-periodic motions seem 
well developed. There appears, however, to be R paucity of data for comparison 
with theory. The data available suggest that strong energy estimates (though 
not necessarily in a global sense; cf. Joseph & Hung 1971) are more reliable at 
low frequencies than either linear or mean energy bounds, where by mean energy 
theory we mean an energy method based on a periodicity criterion (Davis & 
von Kerczek 1973; Homsy 1974).  At higher frequencies, say y 2.0 for the pre- 
sent problem, linear theory appears to be in reasonable agreement with experi- 
ment. 

The authors would like to express their appreciation to the University of 
Massachusetts Computing Centre for grants without which the computations 
reported in this paper would not have been possible, and to Dr Philip Hall for 
copies of his manuscript prior to publication. 

Appendix 

(Morse & Feshbach 1953, p. 780):  
The Jacobi polynomials chosen satisfy the following normalization conditions 

The sets {$i}j”=l and {$j}& defined by ( 1 4 )  may be shown to be complete in 
U [ O ,  11 (Riley 1975).  The disturbance equations (12a ,  b )  may be written as 

- gau/aT = - LY=U + &(28)* VV,  
av/aT = JZV - &(28)4 ( D V )  U. 

(A 1)  

(A 2) 
Define 

$i 2’$i dx ,  Aij = 
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All integrations may be performed analytically. It is, however, more con- 
venient to evaluate the contributions to C and e arising from the oscillatory shear 
flow using Gaussian quadrature. After the necessary integrations have been 
performed (Al) and (A2) are transformed into 

where a dot denotes differentiation with respect to r. 

Equation (A 3) may then be written as 
The matrix containing A in (A 3) is positive definite and therefore invertible. 

where 

[t] = G [;I, 
G = [A-1 '1 [" d(2s)'c] 

o A-1 &(26)4e B ' 

The expansion functions {q5i}j?=1 and {$j}& have some degree of orthogonality 
(they me in fact minimal), and hence are expected to give rise to a reasonably 
stable numerical scheme (see Mikhlin 1971, p. 132). While testing sections of 
the program, the steady problem was solved by the standard eigenvalue method 
using the principle of the exchange of stabilities. Values of N up to 20 were taken 
without evidence of numerical instability. 

In  reservation we note that convergence appears to be slightly slower than that 
obtained with the functions used by Yih & Li (1972) or Rosenblat & Tanaka 
(1971), at least for the steady problem. 
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